ANewro/

,Qrgjas f'ao{ a?"

Genetic Algorithm based Input Selection for a Neural Network Function
" Approximator with Applications to SSME Health Monitoring

Charles C. Peck and Atam P Dhawan

Dept. of Electrical and Computer Engineering

University of Cincinnati
Cincinnati, OH 45221

Abstract— A genetic algorithm is used to select
the inputs to a neural network function approxi-
mator. In the application considered, modeling
critical parameters of the Space Shuttle Main En-
gine, the functional relationships among measured
parameters is unknown and complex. Further-
more, the number of possible input parameters is
quite large. Many approaches have been proposed
for input selection, but they are either not pos-
sible due to insufficient instrumentation, are sub-
- jective, or they do not consider the complex mul-
tivariate relationships between parameters. Due
to the optimization and space searching capabili-
ties of genetic algorithms, they were employed in
this study to systematize the input selection pro-
cess. The results suggest that the genetic algo-
rithm can generate parameter lists of high quality
without the explicit use of problem domain knowl-
edge. Suggestions for improving the performance
of the input selection process are also provided.

1. INTRODUCTION

There is considerable interest within the space industry
in improving the fault detection and isolation capabili-
ties of rocket engine condition monitoring systems, both
real-time and post-test. This requires developing accu-
rate models of engine parameters based on other measured
parameters. Developing accurate models is particularly
difficult due to the highly complex, non-linear nature of
rocket engines, the limited suite of measured parameters,
and the large variability of behavior among engines of the
same design. i

It has been shown that neural networks with one hid-
den layer can uniformly approximate any continuous func-
tion [1, 2, 3]. Furthermore, neural networks are well-suited
for problems in which the exact relationships between in-
puts and outputs are complex or unknown (4, 1]. These
conclusions may be applied to dynamical systems if the

tThis work was supported by a contract from the NASA Space
Engineering Center for System Health Management Technology at
the University of Cincinnati

Claudia M. Meyer
Sverdrup Technology, Inc.
NASA Lewis Research Center Group
Brook Park, OH 44142

system state is sufficiently represented in the inputs of
the neural network. For these reasons, feedforward neural
networks have been used to model critical parameters of
the Space Shuttle Main Engine (SSME) during the start-
up transient and they have been shown to be effective [4].

A task that is critical to the success of neural net-
work modeling of complex, dynamical systems such as the
SSME is the choice of input parameters. There are sev-
eral constraints that complicate this task. First, while the
instrumentation of the SSME is extensive, it is not com-
plete. Therefore, it is unlikely that it will be possible to
completely describe any subsystem input or output. This
makes the use of characteristic equations particularly diffi-
cult [5). Second, as was discussed above, it is necessary to
provide enough state information to model the desired pa-
rameter. Finally, it is not practical to use a large number
of inputs for the following reasons. First, large input sets
make training the network considerably more difficult. In
addition, the input set should be small to reduce the hard-
ware and/or computational complexity and to reduce the
processing delay. This last consideration is especially im-
portant if the system is to be used for real-time modeling.

The effect of the input size on the system performance
is further exacerbated by the use of multiple past values
(or time windows) of each input. A time window of each
input parameter is typically used in order to provide time
dependent information. The size of the window multiplies
the number of inputs to the network. For example, if
10 parameters are chosen as network inputs and a time
window of the past ten values is used for each parameter,
then the effective number of inputs to the network is 100.

Many approaches for input selection have been pfo—
posed or used. These include characteristic equations, en-
gine schematic analyses, correlations between candidate
input parameters and the modeled parameter, and expert
advice [5]. As suggested above, the use of some of these
methods is limited due to the lack of sufficient instrumen-
tation. Furthermore, some of these methods are subjec-
tive or they do not adequately measure the multivariate
dependencies present in the system. For these reasons, a
systematic approach for input selection under the existing

JEEE Inv‘er-naﬁoéa/ Conference on
Networks 5/38—4///93/ San Froancescd

constraints is desired.

The choice of inputs may be modeled as an optimiza-.

tion problem where the space of possible solutions is quite
large. In fact, many hundreds of sensors are used for mon-

“itoring during test firings of the SSME. If only 100 sensors
were used, then 2190 distinct input sets would exist. Since
an exhaustive search through a space with this order of
magnitude is clearly not possible, an alternative search
method is required.

Genetic algorithms are well suited for searching in a
large parameter space [6, 7). Through the use of seeding
(the process of providing an initial set of possible solu-
tions), genetic algorithms search from a set of solutions or
starting points, rather than a single starting point. Ge-
netic algorithms are not derivative based, thus they can
search spaces where methods such as conjugate descent
fail. They work with both discrete and continuous param-
eters. They explore the parameter space and exploit the
similarities between highly fit candidate solutions [6, 8].
Furthermore, through the use of elitism (a variant method
in which the best solution of a generation is promoted un-
altered to the next generation), a genetic algorithm can be
guaranteed to perform at least as well the methods used to
seed or initialize it. For these reasons, a genetic algorithm
was used to select the inputs to a neural network that
modeled an SSME parameter during the start-up tran-
sient.

This paper will first present the design issues and
methodology applied to the selection of SSME input pa-
rameters. A presentation and discussion of results will
follow. Finally, the conclusions and ideas for future work
will be presented.

II. DESIGN ISSUES AND METHODOLOGY

There are three fundamental design requirements for ap-
plying genetic algorithms: encoding candidate solutions
onto binary strings, decoding and evaluating a binary
string, and developing a fitness function that will guide
the genetic algorithm to produce the desired results.

For this application, encoding candidate solutions onto
binary strings is trivial since a single bit is sufficient to in-
dicate whether a particular parameter is to be included in
the network input set. Accordingly, the string, or chromo-
some, has one bit for every candidate engine parameter.
To reduce the size of the search space, redundant sen-
sor measurements were eliminated and those parameters

believed to be nearly independent of the modeled param-.

eter were not included in the candidate parameter set.
This reduced the size of the candidate parameter set to
49 parameters from the hundreds of parameters described
above.

Decoding and evaluating a chromosome is also straight-
forward. First, the number of parameters encoded in the
chromosome is determined. Then, a neural network with

the proper number of inputs is created and the weights
are randomly initialized. Each network is provided with
ten hidden layer nodes. A training set is created using
the parameters indicated in the chromosome. The input
sets are expanded to include a time window of five past
values for each parameter. Finally, the neural network
is trained. To limit the computational requirements in
training the neural networks, the QuickProp learning al-
gorithm is used [9] and each network is trained for only 100
epochs, which was determined empirically to be sufficient
to distinguish the performance of one network configura-
tion from another. According to the analysis provided in
[9], this should be comparable to 1000 epochs of training
with standard backpropagation. -

The fitness function must be able to guide the genetic
algorithm to produce the smallest set of input parameters
that are sufficient for a neural network function approxi-
mator to accurately predict a modeled parameter. Ideally,

‘the resulting neural network function approximator should

be able to learn and generalize the relationships between
the input parameters and the output parameter such that
the approximation is accurate even for test firings not en-
countered during training. Of these two network perfor-
mance objectives, the determination of learning ability is
the most straightforward and the only one considered in
this paper. To provide the guidance described above, the
fitness function must measure some properties of the can-
didate solution and compute a number that indicates the
“fitness” of that solution. The properties considered in
this paper include the performance of the generated neu-
ral network, the convergence properties of the training
process, and the number of inputs. It should be noted
prior to discussing fitness function implementation that,
in this paper, the smaller the fitness function value, the
better the evaluated solution is considered to be.

The performance of the neural network is determined
by measuring the approximation error of the network on
the training data. This provides a measure of how well a
network is capable of learning the input/output relation-
ships.

As mentioned above, the convergence properties of the
training process are also considered in the fitness func-
tion. In this manner either early convergence or late con-
vergence can be favored. This is important since, as de-
scribed above, the neural networks are not fully trained
during the genetic algorithm in order to reduce the compu-
tational requirements. To understand the relevance, con-
sider two networks, one that has a low training error and
early convergence, and another that has a higher training
error and late convergence. It is not clear which network
should be considered better. It may be argued that the
first network is better since it converged to a stable condi-
tion rapidly. Conversely, it may be argued that the second
network is better since it is still in a rapid learning phase

bounding box

Training Error

Epochs

Figure 1: Early versus Late Training Error Convergence

and, with further training, its error performance may ex-
ceed the performance of the first network. Both of these
cases were used in the overall system to evolve input pa-
rameter sets.)
The method used to reflect the convergence properties
exploits the observation that the training error of each
neural network began on a high plateau and remained
there, at least briefly, before falling rapidly, as shown
in Figure 1. Since oscillations and unusual patterns in
the training error were not observed, integration of the
area bounded by the error curve and a bounding rectan-
gle could be performed. To favor early convergence, the
convergence term is computed by integrating this area of
integration and normalizing it by the area of the bounding
box. For example, if A, B, and C denote the normalized
areas of their corresponding regions in Figure 1, the con-
vergence term is A for the early training error curve and
A + B for the late training error curve. The convergence
term favoring late convergence is simply the complement
of the convergence term favoring early convergence. This
corresponds to a convergence term of B + C for the early
training error curve and C for the late training error curve.

As described above, the fitness of a candidate solution
is also related to the size of the input parameter set. In-
cluding the input set size constraint in the fitness function
could be done simply by multiplying the training error by
the number of parameters selected. This, however, re-
sults in a very strong constraint. The strength of the size
constraint can be controlled by adding a constant to the
number of parameters selected. A small offset created in
this manner yields a strong size constraint, whereas a large
offset yields a weak one. The fitness function may be fur-
ther adjusted by squaring the size constraint term. This
increases the strength of the constraint as the number of
parameters increases.

The design of the size constraint term in the fitness func-
tion is further complicated by the size disparity between

the chromosomes within the seeding population. The ini-
tial population of the genetic algorithm was seeded in two
ways. First, four sets of input parameters were selected
based on prior knowledge of SSME behavior. These seed-
ing sets consist of approximately 10 parameters each. The
remainder of the initial population was generated with the
use of a random number generator, which selected each
input parameter with a probability of 50%. Thus, the
randomly selected seeding sets consist of approximately
25 parameters each. If all of the seeding sets were approx-
imately the same size, a single offset could be chosen that
would yield the desired input set size at the end of the evo-
lution process. The size disparity, however, between the
knowledge-based seeding sets and the randomly selected
seeding sets results in either a strongly biased choice of
input parameters or it results in input sets that are too
large.

For the work presented in this paper, generation depen-
dent offsets were used to avoid biasing the results while
ensuring satisfaction of the size constraint. Initially, the
offset was set very high to allow the candidate solutions to
compete primarily on the basis of the training error. As
the genetic algorithm proceeded, the size constraint was
made progressively stronger. By the last generation the
offset was small, yielding a strong bias for shorter lists.
This change of offset with respect to the generation will
be referred to as an offset progression. Two offset pro-
gressions were used: one yielding a generally weak size
constraint, and another yielding a generally strong size
constraint. The offset progression yielding the weaker size
constraint ranged from 71 initially to 14 over 20 gener-
ations. The other ranged from 45 initially to 7 over 20
generations. The resulting fitness functions are shown in
Equations 1 and 2, respectively: -

_ a2
fweak = C(—C%GE-)G{)— x Training Error, (1)
— 9202
Sstrong = C(—c({—s%—?g)cz—) X Training Error, (2)

where f is the fitness function value, C is the convergence
term (which may be 1.0 if no convergence properties are
considered), ¢ is the number of parameters in the candi-
date input list, and G, which ranges from 0 to 19, is the
generation number.

The process for selecting sets of input parameters pro-
ceeded in two stages. The first stage consisted of inde-
pendently evolving three different populations of candi-
date solutions. One population was evolved using a fit-
ness function without any training convergence bias. The
other two were biased for early and late training conver-
gence. Each of these populations was evolved with a weak
size constraint to favor lower approximation error.

The ten most fit chromosomes from each of the three
first stage populations were used along with 20 randomly -

generated chromosomes to seed the second stage genetic
algorithm. The primary purposes of the second stage were
to merge the three diverse and independent populations,
and to further reduce the size of the parameter lists. To
" meet this last objective a fitness function with a strong
size constraint and no convergence bias was used.

The use of three independent first stage populations
increases diversity, robustness, and resistance to domina-
tion by “Super Individuals.” “Super Individuals” are sub-
optimal solutions that are significantly more fit than other
solutions early in the evolution process. This allows them
to dominate a subsequent population after a few genera-
tions. The concept of “Super Individuals” should not be
confused with elitism. Elitism only guarantees that the
best string will be promoted to the next generation unal-
tered, it does not imply dominance.

Since the fitness functions described above are noisy,
they provide less guidance than deterministic fitness func-
tions. They are noisy because the approximation errors of
a particular network will vary from the errors of other im-
plementations of the same network. Implementations of a
particular network vary because they are each initialized
_ with random weights. Although different implementations
perform similarly after training, they perform differently
due to their generally unique final weight sets.

When noisy fitness functions are present, the genera-
tional replacement technique is typically used [7] to mit-
igate the undesirable effects of inaccurate fitness evalua-
tions. Generational replacement is implemented by com-
pletely replacing the population each generation. In-addi-
tion to using generational replacement in this study, each
chromosome was reevaluated whenever it occurred in a
population. Combined, these techniques “temporally” av-
erage the effects of fitness function variations on chromo-
somal representation in future populations.

III. RESULTS AND DISCUSSION

The fundamental output of the genetic algorithm con-
sists of candidate parameter lists to be used as inputs
to a neural network for modeling a particular parame-
ter during start-up. The parameter that was modeled is
the SSME’s High Pressure Oxidizer Turbine (HPOT) dis-
charge temperature, which has a Parameter IDentification
(PID) number of 233. The three parameter lists generated
by training-based fitness functions with the best fitness
values from the last generation of the second stage are
presented in Table 1. These three lists, labeled GA-1-
GA-3, have been shown to be physically reasonable in the
context of the SSME [10]. An additional list, labeled REF
- in Table 1, is also presented for the purpose of comparison.
This “reference” list has been modified from the one pre-
sented in [4] to exclude autoregressive information. The
PID’s in each of these lists are described in Table 2.

It should be noted that the knowledge-based seeding

lists were outperformed early in the process by genetic al-
gorithm generated parameter lists. This may be explained
by the larger number of input parameters included in the
randomly selected seeding sets and the lack of a strong
size constraint in the early generations. The larger sets
of parameters had smaller training errors and they were
not penalized for their size. While the behavior and re-
sults of the genetic algorithm were certainly affected by
the knowledge-based seeding sets, the guidance provided
by these sets did not appear to be strong.

To evaluate the performance of the parameter lists pro-
duced by the genetic algorithm and the reference list, feed-
forward neural networks were trained for 20,000 cycles
using the standard backpropagation learning algorithm.
Each network had one hidden layer with 10 hidden units
and used a time window of five past values. The resulting
networks were then used to approximate PID 233 using
measured parameters from 12 actual SSME test firings.
Four of the test firings were used for training the networks
and eight were used to validate the resulting models. The
results, as represented by the mean squared error (MSE),
the normalized MSE, and the maximum percent error, are
shown in Tables 3, 4, 5, and 6. A summary of these results
is presented in Tables 7 and 8. The results are divided into
two groups: one presenting the aggregate performance of
the networks on the training data (Table 7), and the other
presenting the aggregate performance of the networks on
the validation data (Table 8). The first group measures
the learning capabilities of the networks and the second
group measures the generalization capabilities.

In considering the performance of the different net-
works, it should be recognized that even though the net-
works are fully trained, their final performance is still de-
pendent on their weight initializations. Thus, the perfor-

. mance of another network implementation may differ. It

is clear from the results that the parameter list GA-1 has
the worst error performance of the four lists. This is com-
pensated by the fact that this is the shortest parameter
list. Even though the error performance of this parameter
list is the worst, it is still close to the performance of the
other lists, including the reference list.

The parameter lists GA-2 and GA-3 outperformed the
reference list on the training data and performed only
slightly worse than the reference list on the validation
data. Due to the large standard deviations of valida-
tion data error, the differences in the error means between
these two particular network implementations cannot be

" considered statistically significant. Thus, it can concluded

that the parameter lists GA-2 and GA-3 perform approx-
imately as well as the reference list.

IV. CONCLUSIONS AND FUTURE WORK

The results indicate that the error performance of the ge-
netic algorithm generated parameter lists is roughly the

Table 1: Parameter Lists

Parameter | Number Parameters

List of PIDs

GA-1 6 21 58 209 734 951 1050

GA-2 7 21 58 209 327 734 951 1058

GA-3 8 21 52 58 209 327 734 951 1050

REF 9 40 42 59 231 480 1205 1212 O/Cs OPBs

Table 2: Parameter Descriptions

PID Description
21 Main Combustion Chamber Oxidizer Injection Temperature
40 Oxidizer Preburner Oxidizer Valve Actuator Position ' -
42 Fuel Preburner Oxidizer Valve Actuator Position
52 High Pressure Fuel Pump Discharge Pressure
58 Fuel Preburner Chamber Pressure
59 Preburner Boost Pump Discharge Pressure
209 High Pressure Oxidizer Pump Inlet Pressure
231 High Pressure Fuel Turbine Discharge Temperature
233t High Pressure Oxidizer Turbine Discharge Temperature
327 High Pressure Oxidizer Pump Balance Cavity Pressure
480 Oxidizer Preburner Chamber Pressure
734 Low Pressure Oxidizer Pump Shaft Speed
951" High Pressure Oxidizer Pump Primary Seal Drain Pressure
1050 Oxidizer Tank Discharge Temperature
1058 Engine Oxidizer Inlet Temperature
1205 Facility Fuel Flow
1212 Facility Oxidizer Flow
0/Cs | Dummy Parameter indicating Open/Closed Loop Operation
OPBs | Dummy Parameter indicating Oxidizer Preburner Prime Time

t the modeled parameter

same as that of the reference list. Furthermore, in all
cases, the genetic algorithm generated parameter lists are
smaller than the reference list. Thus, the genetic algo-
rithm was able to systematically generate physically rea-
sonable parameter lists that performed well without the
explicit use of problem domain knowledge.

Many improvements for the input selection process have
been envisioned. One may, for example, modify the fitness
evaluation function to be dependent on the error of a val-

idation set instead of the training set. This would favor
parameter lists that yield networks with superior general-
izing capabilities instead of lists that yield rapid learning.

As demonstrated by the GA-1 list, smaller size can be
overemphasized compared to the error performance. In-
stead of favoring a parameter list of the smallest size, a
list of a particular size could be favored (e.g., the largest
tolerable size). This would favor the inclusion of sufficient
information while discouraging the use of parameters that

~Table 3: Error Statistics from Parameter List GA-1

Test | Training/ MSE NMSE Max.
Firing | Validation % Error
B1046 T '3.787033 | 0.000322 | 2.2330
B1060 T . | 14.743364 | 0.001223 | 4.8150
B1061 v 20.168583 | 0.001657 | 10.4348
B1062 v 34.029559 | 0.002832 |} 9.6225

.B1063 v 39.671779 | 0.003301 | 6.9063
B1066 v 30.608499 | 0.002532 | 7.5330
B1067 v 42.103255 | 0.003498 | 9.2189
B1070 T 11.699498 | 0.000945 | 3.1922
B1071 v 63.607371 | 0.005154 | 20.8187
B1072 v 23.816642 | 0.001898 | 8.3420
B1075 v 20.268258 | 0.001669 | 10.0018
B1077 T 12.931541 | 0.001045 | 5.3681

Table 4: Error Statistics from Parameter List GA-2

Test | Training/ MSE NMSE Max.
Firing | Validation % Error
B1046 T 3.341027 | 0.000284 | 2.0253
B1060 T 6.059692 | 0.000503 | 3.1339
B1061 v 19.080619 | 0.001568 | 5.9461
B1062 \% 37.601837 | 0.003129 | 9.9597
B1063 v 35.212338 | 0.002930 | 6.6999
B1066 v 33.799122 | 0.002796 | 7.3425
B1067 v 36.724494 | 0.003051 | 7.9440
B1070 T 10.692421 | 0.000864 | 3.6021
B1071 v 48.479267 | 0.003929 | 15.9965
B1072 v 17.781945 | 0.001417 | 5.1814
B1075 v 35.017457 | 0.002884 | 11.4959
B1077 T 7.973934 | 0.000644 | 2.6040

~Table 5: Error Statistics from Parameter List GA-3

“Test | Training/ MSE NMSE Max.
Firing | Validation % Error
B1046 T 4.015642 | 0.000341 | 1.7042
B1060 T 6.114787 | 0.000507 | 2.5343
B1061 v 20.477665 | 0.001682 | 6.2484
B1062 A% 40.542411 | 0.003374 { 10.5837
B1063 \' 38.320758 | 0.003188 | 7.1349
B1066 v 38.782970 | 0.003208 | 8.8021
B1067 A% 39.245907 | 0.003261 | 8.4381
B1070 T 10.516996 | 0.000850 | 3.2462
B1071 A% 53.008396 0.5]04296 18.9413
B1072 v 17.990471 | 0.001434 | 4.7040
B1075 v 33.172788 | 0.002732 | 12.0369
B1077 T 6.889614 | 0.000557 | 2.3684

Table 6: Error Statistics from Parameter List REF

Test | Training/ MSE NMSE Max.
Firing | Validation % Error
B1046 T 6.652181 | 0.000565 | 3.8462
B1060 T 7.375382 | 0.000612 | 3.0370
B1061 v 22.370471 | 0.001838 | 4.8509
B1062 v 23.747774 | 0.001976 | 7.2832
B1063 A% 28.076726 | 0.002336 | 7.9618
B1066 v 16.538060 | 0.001368 | 7.6115
B1067 A% 20.482848 | 0.001702 | 6.6011
B1070 T 6.588053 | 0.000532 | 3.8668
B1071 A% 50.654580 | 0.004105 | 11.0878
B1072 v 42.897089 | 0.003419 | 6.7544
B1075 v 25.213499 | 0.002077 | 9.4449
B1077 T 7.809484 | 0.000631 _ 4.5456

Table 7: Summary of Parameter List Performance on Training Data

Parm. MSE NMSE Max.

List i g 7 o B s
GA-1 | 10.790359 | 4.833357 | 0.000884 { 0.000392 | 3.902086 | 1.445958
GA-2 | 7.016768 | 3.101272 | 0.000574 | 0.000244 | 2.841333 | 0.679829
GA-3 | 6.884260 | 2.709112 | 0.000564 | 0.000212 | 2.463281 | 0.633292
REF | 7.106275 | 0.589258 | 0.000585 | 0.000045 | 3.823920 | 0.617108

Table 8: Sumnmary of Parameter List Performance on Validation Data

Parm.
List

MSE

NMSE

Max.

7

o

[

o

n

(<4

GA-1

34.284241

14.485731

0.002818

0.001180

10.359750

4.397353

GA-2

32.962132

10.068242

0.002713

0.000832

8.820735

3.563816

GA-3

35.192673

11.349328

0.002897

0.000937

9.611175

4.430940

REF

28.747631

11.808645

0.002353

0.000932

7.699442

1.889502

do not significantly improve the error performance.

V. ACKNOWLEDGMENTS

The public domain genetic algorithm GENESIS Version
5.0, written by John J. Grefenstette, was used for the work
described in this paper. Furthermore, the fitness evalua-
tion function is a highly modified and optimized derivative
of Terry Regier’s implementation of the QuickProp train-
ing algorithm.

REFERENCES

[1] S. Chen, S. A. Billings, and P. M. Grant. Non-Linear
Systems Identification Using Neural Networks. Re-
search Report 370, University of Edinburgh, Mayfield
Road, Edinburgh, Scotland, August 1989.

[2] G. Cybenko. Approximation by Superpositions of a
Sigmoidal Function. Mathematics of Control, Sig-
nals, and Systems, 2:303-314, 1989.

[3] K. Funahashi. On the Approximate Realization of
Continuous Mappings by Neural Networks. Neural
Networks, 2:183-192, 1989.

[4] Claudia M. Meyer and William A. Maul. The Ap-
plication of Neural Networks to the SSME Startup
Transient. AIAA 91-2530, July 1991.

[5] D. K. Makel, W. H. Flaspohler, and T. W. Bickmore.
Sensor Data Validation and Reconstruction, Phase 1:
System Architecture Study. NASA CR 187122, 1991.
Contract No. NAS3-25883.

[6] David E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley Publishing Company, Inc., Reading, Mas-
sachusetts, 1989.

[7] Lawrence Davis. Handbook of Genetic Algorithms.
Van Nostrand Reinhold, New York, 1991.

[8] David J. Powell, Michael M. Skolnick, and Siu Shing
Tong. Interdigitation: A Hybrid Technique for Engi-
neering Design Optimization Employing Genetic Al-
gorithms, Expert Systems, and Numerical Optimiza-
tion. In L. Davis, editor, Handbook of Genetic Al-
gorithms, chapter 20, pages 312-331. Van Nostrand
Reinhold, New York, 1991.

[9] Scott E. Fahlman. Faster-Learning Variations
on Back-Propagation: An Empirical Study. In
D. Touretzky, G. Hinton, and T. Sejnowski, editors,
.Proceedings of the 1988 Connectionist Models Sum-
mer School, pages 38-51, San Mateo, CA, June 1988.
Carnegie Mellon University, Morgan Kaufmann Pub-
lishers.

[10] Charles C. Peck, Atam P. Dhawan, and Claudia M.
Meyer. SSME Parameter Modeling using Neural net-
works and Genetic Algorithm based Input Selection.
Technical Report TR_141/1/93/ECE, Dept. of Elect.
and Comp. Eng., Univ. of Cincinnati, Dept. of Elect.
and Comp. Eng., Univ. of Cincinnati, Cincinnati, OH
45221, January 1993.

